前缀和与差分模板
模板
1 2 3 4
| S[i, j] = 第i行j列格子左上部分所有元素的和 以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为: S[x2, y2] - S[x1 - 1, y2] - S[x2, y1 - 1] + S[x1 - 1, y1 - 1]
|
题目描述:
输入一个 n 行 m 列的整数矩阵,再输入 q 个询问,每个询问包含四个整数 x1,y1,x2,y2,表示一个子矩阵的左上角坐标和右下角坐标。
对于每个询问输出子矩阵中所有数的和。
输入格式
第一行包含三个整数 n,m,q。
接下来 n 行,每行包含 m 个整数,表示整数矩阵。
接下来 q 行,每行包含四个整数 x1,y1,x2,y2,表示一组询问。
输出格式
共 q 行,每行输出一个询问的结果。
数据范围
1≤n,m≤1000,
1≤q≤200000,
1≤x1≤x2≤n,
1≤y1≤y2≤m,
−1000≤矩阵内元素的值≤1000
输入样例:
3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4
输出样例:
17
27
21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
| #include<iostream>
using namespace std;
const int N =1010;
int n,m,q; int a[N][N], s[N][N];
int main() { scanf("%d%d%d", &n, &m, &q); for(int i = 1; i <= n; i++) for(int j = 1; j <= m; j++) scanf("%d", &a[i][j]); for(int i = 1; i <= n; i++) for(int j = 1; j <= m; j++) s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i][j]; while(q --) { int x1,y1,x2,y2; scanf("%d%d%d%d",&x1,&y1,&x2,&y2); printf("%d\n", s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]); } return 0 ; }
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
| #include<stdio.h> #define N 1010
int n,m,q; int a[N][N], s[N][N];
int main() { scanf("%d%d%d", &n, &m, &q); for(int i = 1; i <= n; i++) for(int j = 1; j <= m; j++) scanf("%d", &a[i][j]); for(int i = 1; i <= n; i++) for(int j = 1; j <= m; j++) s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i][j]; while(q --) { int x1,y1,x2,y2; scanf("%d%d%d%d",&x1,&y1,&x2,&y2); printf("%d\n", s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]); } return 0 ; }
|
版权声明: 此文章版权由chen-yisen所有,如有转载,请注明明來自原作者