归并排序模板

C++模板

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
LL merge_sort(int l, int r){
if(l >= r) return 0;

int mid = (l + r)/2;

LL res = merge_sort(l, mid) + merge_sort(mid + 1, r);

int i = l, j = mid + 1, k = 0;
while(i <= mid && j <= r){
if(q[i] <= q[j]) tmp[k++] = q[i++];
else{
res += mid - i + 1;
tmp[k++] = q[j++];
}
}
while(i <= mid) tmp[k++] = q[i++];
while(j <= r) tmp[k++] = q[j++];

for(int i = l, j = 0; i <= r; i++, j++) q[i] = tmp[j];

return res;
}

C模板

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
LL merge_sort(int l, int r){
if(l >= r) return 0;

int mid = (l + r)/2;

LL res = merge_sort(l, mid) + merge_sort(mid + 1, r);

int i = l, j = mid + 1, k = 0;
while(i <= mid && j <= r){
if(q[i] <= q[j]) tmp[k++] = q[i++];
else{
res += mid - i + 1;
tmp[k++] = q[j++];
}
}
while(i <= mid) tmp[k++] = q[i++];
while(j <= r) tmp[k++] = q[j++];

for(i=l, j = 0; i <= r; i++, j++) q[i] = tmp[j];

return res;
}


题目描述:

给定一个长度为 n 的整数数列,请你计算数列中的逆序对的数量。

逆序对的定义如下:对于数列的第 i 个和第 j 个元素,如果满足 ia[j],则其为一个逆序对;否则不是。

输入格式
第一行包含整数 n,表示数列的长度。

第二行包含 n 个整数,表示整个数列。

输出格式
输出一个整数,表示逆序对的个数。

数据范围

1≤n≤100000,
数列中的元素的取值范围 [1,10^9]。

输入样例:

6
2 3 4 5 6 1

输出样例:

5


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include<iostream>

using namespace std;

typedef long long LL;

const int N = 1e5 + 10;
int n;
int q[N], tmp[N];

LL merge_sort(int l, int r){
if(l >= r) return 0;

int mid = (l + r)/2;

LL res = merge_sort(l, mid) + merge_sort(mid + 1, r);

int i = l, j = mid + 1, k = 0;
while(i <= mid && j <= r){
if(q[i] <= q[j]) tmp[k++] = q[i++];
else{
res += mid - i + 1;
tmp[k++] = q[j++];
}
}
while(i <= mid) tmp[k++] = q[i++];
while(j <= r) tmp[k++] = q[j++];

for(int i = l, j = 0; i <= r; i++, j++) q[i] = tmp[j];

return res;
}

int main(){
cin >> n;

for(int i = 0; i < n; i++) scanf("%d", &q[i]);

printf("%lld",merge_sort(0, n - 1));

return 0;
}



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#include<stdio.h>

typedef long long LL;

const int N = 1e5 + 10;
int n;
int q[100010], tmp[100010];

LL merge_sort(int l, int r){
if(l >= r) return 0;

int mid = (l + r)/2;

LL res = merge_sort(l, mid) + merge_sort(mid + 1, r);

int i = l, j = mid + 1, k = 0;
while(i <= mid && j <= r){
if(q[i] <= q[j]) tmp[k++] = q[i++];
else{
res += mid - i + 1;
tmp[k++] = q[j++];
}
}
while(i <= mid) tmp[k++] = q[i++];
while(j <= r) tmp[k++] = q[j++];

for(i=l, j = 0; i <= r; i++, j++) q[i] = tmp[j];

return res;
}

int main(){
int i;
scanf("%d",&n);

for( i = 0; i < n; i++) scanf("%d", &q[i]);

printf("%lld", merge_sort(0, n - 1)); //long long型输出要用 %lld

return 0;
}